
Indirect cube topology for small- and medium-scale clusters

Javier Navaridas
Dep. de Arquitectura y Tecnología de Computadores

Universidad del País Vasco - UPV/EHU

P. Manuel de Lardizabal 1, 20080 San Sebastián

javier.navaridas@ehu.es

 José Miguel-Alonso
Dep. de Arquitectura y Tecnología de Computadores

Universidad del País Vasco - UPV/EHU

P. Manuel de Lardizabal 1, 20080 San Sebastián

j.miguel@ehu.es

Abstract
Interconnection networks arranged as k-ary n-trees

or spines are widely used to build high-

performance computing clusters. Current blade-

based technology allows the integration of the first

level of the network together with the compute

elements. The remaining network stages require

dedicated rack space. In most systems one or

several racks house the upper network stages,

separated from the compute elements. This incurs

in additional costs, which are significant for small

systems. In this paper we evaluate an alternative

arrangement that connects elements in a cube-like

topology. This organization requires only the use

of the switches that are integrated within the

compute elements. We explore a wide variety of

system scales, ranging from 120 to 7680 compute

nodes, in order to find out to which size the

proposed topology can scale. Results of the

experiments suggest that the proposed

arrangement is not viable for large-scale systems,

but show interesting advantages in small- and

medium-scale clusters.

1. Introduction

The development of off-the-shelf, standardized

high performance networking technologies (such

as Myrinet [5], Gigabit Ethernet [6]or InfiniBand

 [10]) has made viable the utilization of clusters of

computers as high performance computing

systems. In fact, the widespread utilization of

different scales of such systems, has favored the

research and development of a bunch of hardware

and software technologies which have made the

construction of compute clusters more affordable,

moving from handcrafted clusters to perfectly

integrated, ready-to-work systems that include a

large collection of software tools that support

centralized management. The development of

such technologies, in turn, have favored an even

broader utilization of HPC clusters which, in fact,

have become the preferred way to build high

performance computing systems. For instance,

looking at the current Top500 list [8], we can see

that only a few listed systems are built using ad-

hoc supercomputing technologies (Cray’s XT

families [2], NEC’s earth simulator [12], IBM’s

BlueGene families [13] and IBM’s ASC [14]),

while most of the systems in the lists are different

instances of clusters.

The most common networking technologies

used to interconnect state-of-the-art clusters are

InfiniBand and Gigabit Ethernet, being the former

a high performance alternative and the later a

cost-effective choice. At any rate, compute

clusters tend to be interconnected using

multistage, fat-tree based topologies [20]. This

class of indirect networks offer high bandwidth,

low latency communications and have some

desirable properties that can be exploited both by

constructors and users: good scalability, high path

diversity, routing simplicity (deadlock-freedom),

high resilience to failures, low disposition to

congestion, etc. Other indirect topologies such as

the full-Clos, implemented in the TACC Ranger

 [26] are less commonly utilized.

As far as we know, cube-like topologies,

inherited from massively parallel processing

systems, have been rarely used to build super-

clusters. A significant exception is the 11D

hypercube implemented in the NAS Pleiades [19].

SCI [23], a similar technology whose specification

considered the construction of direct networks, did

not gain enough market acceptance.

There are two main reasons to justify this

neglect of direct networks from the cluster

community. Firstly, these topologies are deadlock-

prone and, therefore, their use would require

adding deadlock avoidance mechanisms into the

switching elements or, alternatively, a careful

selection of the routing scheme. Secondly, cube-

like topologies do not scale as well as multistage

topologies do, as will be discussed later on.

The main proposal of this paper is as follows.

Let us assume that a cluster building block is

composed of a collection of compute nodes in an

enclosure. This integrates a network switch that

connects all those nodes and have some external

links. These links are normally used to build a

tree-like network, connecting them to an upper-

stage switch. Instead of doing that, we propose to

connect the building blocks directly among them,

without intermediate switches, in the form of a 2D

or 3D cube. We call this an indirect cube because

it does not connect nodes directly; nodes are

connected to switches that form a cube. Note that

external links have to be arranged in blocks, using

one or more links per dimension – direction: X+,

X-, etc. In the experiments below, 2D tori with 4

parallel links per direction were used.

In this paper we explore the feasibility of

using networks composed of standard switches

arranged as 2D torus topologies, showing how

their performance does scale, when compared to a

tree-like topology. The remaining of this paper is

structured as follows. Section 2 discusses the

reasons that motivate the utilization of cube-like

topologies to interconnect clusters. Section 3 gives

detailed explanation of the simulation-based

evaluation work carried out: systems and

workloads. Section 4 shows and discusses the

obtained results. The paper is closed in Section 5

with the main conclusions of this work.

2. Motivation

We can find two main motivations for arranging

the off-the-shelf switches commonly used in

clusters and superclusters as an indirect cube. The

most compelling one is reducing the cost of the

interconnection network; additionally, we can take

advantage of the vast research work carried out

for this kind of topologies in order to build a

system with good performance levels.

Massively Parallel Processing systems have

been commonly built around cubes (or meshes)

and, therefore, there is plenty of previous work on

how to exploit the characteristics of these

topologies. There are also well-known best

practices to use them. Furthermore, lots of parallel

scientific applications are implemented bearing in

mind that they are going to be executed over a

network adopting these topologies. In fact, the

implementation of a broad range of math

operations is straightforward using cube-like

virtual topologies, as can be seen in [3] and [4].

Briefly, the kind of interconnection networks

proposed in this paper can be considered as a

hybridization of direct and indirect networks.

Regarding the costs, it is remarkable that the

number of network components (switching

elements and links) of a cube-like topology

increases in O(N), while in a tree-like topology it

increases in O(N log N), being N the number of

nodes to be interconnected. Basically, the number

of network components in an indirect cube is the

same as the number of network components in the

first stage of a comparable tree. In other words,

the savings obtained are all the extra links,

switches and racks required to form and house the

remaining stages of the network. To illustrate this

fact, reader can see in Fig. 1 the floor plan of a

large-scale Sun Constellation cluster, in which the

racks containing the interconnection network are

shown in red. Implementing an indirect cube

would allow removing these interconnection

racks, with the subsequent savings in terms of

space, power consumption and heat dissipation.

Note that current blade server technologies

allow the integration of network switches inside

the blade enclosure. Looking at the web pages of

the top server manufacturing companies, we can

found several examples of blade enclosures that

include slots for communications: Dell [7], HP

 [9], IBM [11] and SuperMicro [25]. If first-stage

switches are integrated with the compute nodes,

our building blocks could be extra-dense

enclosures that can be connected directly.

Fig. 1. Floor plan of a Sun Constellation system.

Note that the cost overheads of purchasing

extra racks to form a multistage topology would

become more noticeable for small systems. If we

assume that we always fill a rack with servers, we

would need to purchase an extra rack just to house

the switches required to build the network. An

extreme scenario would be purchasing a rack to

store a single switch.

Building the proposed network with the

above-mentioned blade enclosures would be

extremely easy, because it would not require any

external switch (therefore, no extra racks). Also,

cabling would be much simpler, compared to the

tree. Looking again at Fig. 1 we can see that the

racks storing the interconnection are placed

roughly in the center of the floor plan, in order to

keep the links as short as possible. Still, those

racks located in the borders of the room will

require links of, at least, a few tens of meters. In

the case of an indirect cube, the racks can be

connected to their physical neighbors, which will

require links of a few meters at most. Note also

that shorter links means faster transmission speeds

and reduced latencies – although, as we assume

the utilization of standardized technologies

commonly based on optical links, we will not

consider these advantages. We do consider,

though, the latencies derived from switching

times.

3. Experimental Set-Up

Our in-house developed interconnection network

simulation and evaluation environment, in short

INSEE [22], was the workbench used to evaluate

the feasibility and scalability of the indirect cube

network. Bearing in mind current technologies to

build high performance clusters, we have modeled

the systems basing on the TwinBlade servers

offered by SuperMicro [25] because of their

compute density, the highest we found. This

technology allows integrating 20 compute nodes

in 7U enclosures. Each enclosure can also house a

36-port QDR Infiniband switch, with 20 ports

devoted to connect the compute nodes via a

backplane, plus 16 external output ports. A regular

rack (42U) can include six TwinBlade enclosures

– that already include the first stage of the

interconnection. A depiction of a blade enclosures

and a rack are shown in Fig. 2.

Our study includes systems composed of

small to medium-scale clusters, assuming always

the utilization of complete racks: from a single

rack (120 compute nodes) to 64 racks (7680

compute nodes). We focus on how the

performance of the indirect cube scales in

comparison with that of the kind of tree topologies

implemented in state-of-the-art clusters.

To keep things simple, we have modeled

systems using switches with a fixed number of

ports. We have selected 36 ports, to emulate the

switches included in the TwinBlade enclosures by

Supermicro. With these switches we built a thin-

tree topology using the 20 internal ports to

connect with lower stage of the tree and 16 ports

to connect to the upper one. Note that the

performance of such topology will be very close

to the performance of a full-fledged fat-tree

because the trimming is not very aggressive [18].

With the number of racks included in our set-up

this topology will have in most cases three stages.

The only exceptions are the systems composed by

1, 2 and 3 racks, which will fit in a 2-stage tree.

Examples of the 2-stage and the 3-stage trees are

depicted in Fig. 3

Fig. 2. Schematic depiction of a TwinBlade enclosure

(up) and a rack storing 6 of them (down).

In the case of the indirect cube, as explained

before, only the first stage of switches (those

inside the TwinBlade enclosures) is needed to

interconnect all the compute nodes. It will be

unnecessary to add extra switches or racks to

house them. Taking into account the

characteristics of the switches, we will build 2D

tori using 4 parallel links in each dimension, as

depicted in Fig. 4.

Networking components are modeled as

follows. The switching strategy is virtual cut-

through with packets composed of 8 phits

(physical units) each. Each input port is split into

two virtual channels each of them having

associated a queue able to store up to 4 packets. A

shortest path credit-based adaptive routing scheme

has been used in both the tree and the indirect

cube topologies. In this scheme each input port

sends the number of free slots in its queue to the

neighboring output ports. Packets are routed

through the feasible output port with more credit.

Note that credits are transmitted out-of-band and,

therefore, do not interfere with regular traffic of

the applications.

In the case of the tree, adaptivity means that

packets can adapt in the upward route, but the

downward route is always static (destination mod

k). On the other hand, the indirect cube adaptivity

allows changing the direction and also the parallel

link in the same dimension. Note that in an actual

implementation, the four parallel links could be

aggregated and used as a single connection

working at 4 times the speed of a regular link. A

20

Fig. 4. Port arrangement of the switch included in a

TwinBlade enclosure to form an indirect cube (up).

The indirect cube constructed with the six
enclosures within a single rack (down).

Fig. 3. Examples of the trees used in our experiments: 2 stages (up) and 3-stages (down).
Most elements are hidden for the sake of clarity.

bubble scheme [21] is added in order to guarantee

deadlock freedom. Given that the topology is

composed of rings, when the number of racks

increases, the network becomes congestion-prone.

For this reason, we will measure the performance

of the topology after including a simple

congestion control mechanism that gives priority

to the traffic already inside the network [15]

(therefore, penalizing new injections from nodes).

This mechanism is similar to the one used in the

BlueGene/L family of supercomputers [1]. For the

sake of completeness we will measure the

performance of the indirect cube topology with

this mechanism activated and deactivated. We

want to remark that using adaptive routing

schemes allows taking the best of each topology,

which in turn allows fairly comparing them.

Given the wide variety of network sizes to

evaluate, the use of network traffic taken from

actual application traces is not feasible in our

environment. For this reason we have used a

collection of synthetically generated workloads

that resemble the way in which scientific

applications communicate. Most of these

workloads are explained and justified in [16] and

 [17]. We proceed with a brief description of the

workloads used in this paper.

In All-to-All, all the nodes send a message to

all the other nodes, starting from their next one.

After sending all the messages, each node waits

for the reception of all the messages addressed to

it. The message size is 1 Kbyte.

Binary Tree is an optimized (logarithmic)

implementation of a reduce operation in which the

reduction is made in several steps, each of them

halving the number of messages. The message

size is 10 Kbytes.

Butterfly is an optimized (logarithmic)

implementation of an all-reduce operation. Each

node interchanges messages only with a subset of

the nodes, instead of with all of them. The

message size is 10 Kbytes.

In Near Neighbor, the nodes are arranged in a

virtual 2D torus. Each node sends a message to

each of its neighbors following a dimension order

(X+, X-, Y+ and finally Y-) and then waits for the

reception of its neighbors’ messages. The message

size is 10 Kbytes.

In n-Bodies, the nodes are arranged in a

virtual ring. Each node starts a chain of messages

that travel clockwise across half of the ring. When

the chain finishes, the node at the other side of the

ring sends a message to the source node. The

message size is 10 Kbytes. This workload is only

defined for an odd number of nodes. For this

reason one of the nodes of the network will not

take part in the execution of this workload. More

details about this workload can be found at [23].

In Random, multiple waves of messages are

generated in such a way that all the messages of a

wave must be received before start sending the

messages in the next wave. The source and

destination of the messages are selected randomly

following a uniform distribution. The wave

length, W, is a parameter and affects the causality

of the workload. In this evaluation 40000

messages of 10 Kbytes each are generated using

three different values for W: 1, 200 and 40000.

All workloads were generated to evaluate a

wide variety of systems composed of 1 to 64 racks

(120 to 7680 compute nodes). The only

exceptions are All-to-All and n-Bodies because

their formulation is quadratic and could only be

scaled to systems composed by up to 16 racks.

All-to-All, Butterfly, Near Neighbor and all

the Random cases can be considered heavy

workloads, as they will stress the network with

high contention and congestion scenarios. In

contrast, Binary Tree and n-Bodies can be

considered light because of their high levels of

causality, which limit the formation of persistent

contention for the utilization of network resources.

At any rate, the workloads only include data

interchanges (communication), and therefore the

obtained results should be understood as a worst-

case study because when adding computing

intervals, the execution speed differences among

topologies will be diluted.

Regarding the task-to-node placement policy,

in the trees it will be consecutive, meaning that the

nodes will be occupied from left to right. In the

case of the indirect cubes, the 20 nodes connected

to a switch will be conveniently placed as a 5×4

sub-mesh to keep the resultant indirect cube as

close to a square as possible in all configurations.

Note that, as we will see later, this placement will

favor the communication pattern of the Near

Neighbor workload but, in exchange, it will be

detrimental to the performance for other

workloads. In the case of the Random workloads,

as the underlying pattern is uniform, the

placement will barely affect the overall

performance.

4. Analysis of Results

The execution time for the different systems and

workloads are plotted in Fig. 5. For the sake of

clarity the results of each configuration have been

normalized to the time required by the tree

topology. Therefore, the reported value for the

tree will be always 1. A lower value represents a

faster dispatching of the messages. The tree is

represented by the line denoted as tree, while the

indirect cube is represented by the lines denoted

as icube and icube+cc, being the later the case in

which congestion control is activated.

As we could expect given the difference in the

amount of available network resources, in most

cases the execution time required by the indirect

cube is noticeably longer than that required by the

tree. The only exceptions are the Binary tree and

the Near Neighbor workloads. The former has

such a low-demanding communication pattern that

most networks can handle it easily. Regarding the

latter, the placement selection for the indirect cube

allowed for a perfect match between the virtual

topology of the workload and the actual network

topology, which resulted in a near-optimal

behavior.

All-to-All

0

4

8

12

0 16 32 48 64

Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

n-Bodies

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Binary Tree

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Random (W=1)

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Butterfly

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Random (W=200)

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Near Neighbor

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Random (W=40000)

0

4

8

12

0 16 32 48 64
Number of Racks

N
o
rm
a
liz
e
d
 T
im
e

tree

icube

icube+cc

Fig. 5. Normalized execution time of the different workloads.

It is also noticeable that in those cases where

the tree outperforms the indirect cube, the larger

the system is the worse are the results of the cube.

This is explained by the lower scalability of cube-

like topologies when compared by trees: O(D N)

versus O(log N) in terms of distance, being N the

number of nodes of the topology and D the

number of the dimensions of the cube, 2 in our

set-up. The only exception to this rule is the n-

Bodies workload, in which the difference between

topologies seems to be independent of the system

scale; a constant (approx. 2). This is because the

high causality of the workload, composed by large

chains of dependencies, does not allow fully

exploiting the network resources of a tree. In fact,

the results for this workload are affected more by

the placement than by the topology itself.

The reader should note that, for those

workloads for which the indirect cube can not

compete with the tree (All-to-All, Butterfly and

the Random workloads), the activation of the

congestion control mechanism is noticeably

effective to boost the execution time of the

workload. In the remaining cases, the congestion

control does not affect the execution speed at all,

neither positively or negatively.

We can conclude that the indirect cube

topology can be a good choice for small- and

medium-scale systems, especially for those that

would require extra racks to store only a few

switches. As shown by our results, scaling up the

system may lead to the network becoming an

important performance bottleneck, especially for

those workloads that tend to stress the

interconnection network.

To close the section, authors want to insist in

that, while in most cases the indirect cube

performs worse than the tree, it offers in exchange

clear savings in terms of network complexity.

These savings manifest in the form of fewer

switches and racks, with the subsequent

diminution in the requirements of space, power

consumption and heat dissipation. Furthermore

the number of links and their length is also

reduced, which should lead to faster system

deployment and simpler system management.

5. Conclusions

In this paper we have proposed arranging indirect

networks, such as those used in current clusters

and superclusters, in the form of cube-like

topologies somewhat similar to those traditionally

used in supercomputing systems. A thorough

motivation was discussed focusing basically in

reducing cost and complexity of deployment, even

if performance is somewhat affected.

The indirect cube was compared to a tree-like

topology, the de facto standard in the composition

of superclusters. Results of our simulation-based

experimental work show that the indirect cube

network is not as good as the tree when handling

communication-intensive workloads. However,

adding a simple, local congestion control

mechanism was enough to boost performance

with these workloads. On the other hand, the

performance of indirect cubes with less intense

workloads (for example, those with long chains of

dependencies) is comparable of that of the tree.

It is remarkable that an underlying cube-like

topology can be effectively exploited by

applications, by means of arrangements of

processes using virtual meshes and tori, which

exploit locality in communications. In our set-up,

the indirect cube topology experienced an

improvement of roughly 20% in comparison to the

tree when dealing with this kind of workloads.

The overall conclusion of this paper is that,

while clusters arranged as an indirect cube are

competitive in small- and medium-scale

configurations, they should not be used in large-

scale systems because of their limited scalability.

Still, it would be possible to scale up from a

small system arranged as an indirect cube to a

large system interconnected by a tree-like

topology, just by adding more racks (compute and

networking). This is a viable option because the

networking technology is the same as that used in

regular clusters.

Anyway, more research needs to be performed

in order to provide routing schemes that support

efficient deadlock-free static routing for indirect

networks arranged forming this topology.

Acknowledgements

This work has been supported by the Ministry of

Education and Science (Spain), grant TIN2007-

68023-C02-02, and by grant IT-242-07 from the

Basque Government. Dr. Navaridas is supported

by a post-doctoral grant of the University of the

Basque Country UPV/EHU.

References

[1] NR Adiga et al. "Blue Gene/L torus

interconnection network." IBM Journal of

Research and Development 49 (2/3), 2005.

[2] R Alam et al. "Cray XT4: An Early Evaluation

for Petascale Scientific Simulation". Procs. of

the ACM/IEEE Conf. on Supercomputing,

Reno, NE, USA, 10-16 Nov., 2007.

[3] Y Aoyama, J Nakano. "RS/6000 SP: Practical

MPI Programming". IBM Red Books SG24-

5380-00. Available at: http://www.redbooks.

ibm.com/redbooks/pdfs/sg245380.pdf

[4] E Barszcz, et al. "Solution of Regular, Sparse

Triangular Linear Systems on Vector and

Distributed-Memory Multiprocessors".

Technical Report NAS RNR-93-007, NASA

Ames Research Center, April 1993.

[5] NJ Boden et al. "Myrinet: A Gigabit-per-

second Local Area Network," IEEE Micro, 15

(1), February 1995, pp. 29-36.

[6] DG Cunningham, WG Lane. "Gigabit Ethernet

Networking". Macmillan Publishing Co. Inc.,

Indianapolis, IN, USA. 1999.

[7] Dell. "PowerEdge Blade Servers". Available

at: http://www.dell.com/us/en/enterprise/

servers/blade/ct.aspx?refid=blade&s=biz&~ck

=anav&cs=555

[8] JJ Dongarra et al. "Top500 Supercomputer

sites". Available at: http://www.top500.org/

[9] Hewlett-Packard. "Blade Servers and Blade

Systems". Available at: http://h18004.www1.

hp.com/products/blades/bladesystem/index.ht

ml

[10] InfiniBand Trade Association. "InfiniBand

Architecture Specification". Vol. 1, r1.0.a.

[11] International Business Machines. "IBM

BladeCenter Hardware". Available at: http://

www-03.ibm.com/systems/bladecenter/

hardware/

[12] Japan Agency for Marine-Earth Science and

Technology. "EARTH SIMULATOR".

Available at: http://www.jamstec.go.jp/es/en/

es1/system/index.html

[13] G Lakner, GP Sosa. "Evolution of the IBM

System Blue Gene Solution". IBM Red Books

REDP-4247-00. Available at: http://www.

redbooks.ibm.com/redpapers/pdfs/redp4247.p

df

[14] Lawrence Livermore National Laboratory.

"ASC Purple". Available at https://asc.llnl.

gov/computing_resources/purple/

[15] J Miguel-Alonso et al. "Improving the

Performance of Large Interconnection

Networks using Congestion-Control

Mechanisms". Intl. Journal on Performance

Evaluation, 65 (2008), pp. 203–211.

[16] J Navaridas, J Miguel-Alonso. “Realistic

Evaluation of Interconnection Networks Using

Synthetic Traffic”. 8th Intl Symposium on

Parallel and Distributed Computing. June 30

to July 4 2009. Lisbon, Portugal.

[17] J Navaridas et al. "On synthesizing

workloads emulating MPI applications". The

9th IEEE Intl. Workshop on Parallel and

Distributed Scientific and Engineering

Computing, 2008, Miami, FL, USA.

[18] J Navaridas et al. “Reducing Complexity in

Tree-like Computer Interconnection

Networks”. Parallel Computing 36 (2-3),

2010, pp. 71-85.

[19] NASA Advanced Supercomputing (NAS)

Division. "NAS Computing Resources -

Pleiades Supercomputer". Available at:

http://www.nas.nasa.gov/Resources/Systems/p

leiades.html

[20] F Petrini and M Vanneschi. “k-ary n-trees:

High Performance Networks for Massively

Parallel Architectures”. Procs. of the 11th Intl

Parallel Processing Symposium, Geneva,

Switzerland, 1-5 April, 1997, pp. 87-93.

[21] V Puente et al. "The adaptive bubble router".

Journal of Parallel and Distributed Computing

61 (9), 2001, pp. 1180-1208.

[22] FJ Ridruejo, J Miguel-Alonso. "INSEE: an

Interconnection Network Simulation and

Evaluation Environment". Lecture Notes in

Computer Science, Volume 3648 / 2005

(Proc. Euro-Par 2005), pp. 1014-1023.

[23] “Scalable Coherent Interface”, ANSI/IEEE

Standard 1596-1992, IEEE Service Center,

Piscataway, New Jersey, 1993.

[24] CL Seitz. "The cosmic cube". Comms. of the

ACM, 28 (1), 1985, pp. 22-33.

[25] SuperMicro Computer, Inc. "Products |

SuperBlade". Available at: http://www.

supermicro.com/products/Superblade/TwinBl

ade/

[26] Texas Advanced Computing Center. "HPC

Systems - Sun Constellation Linux Cluster:

Ranger". Available at: http://www.tacc.utexas.

edu/resources/hpc/#ranger

