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Abstract 
Interconnection networks arranged as k-ary n-trees 

or spines are widely used to build high-

performance computing clusters. Current blade-

based technology allows the integration of the first 

level of the network together with the compute 

elements. The remaining network stages require 

dedicated rack space. In most systems one or 

several racks house the upper network stages, 

separated from the compute elements. This incurs 

in additional costs, which are significant for small 

systems. In this paper we evaluate an alternative 

arrangement that connects elements in a cube-like 

topology. This organization requires only the use 

of the switches that are integrated within the 

compute elements. We explore a wide variety of 

system scales, ranging from 120 to 7680 compute 

nodes, in order to find out to which size the 

proposed topology can scale. Results of the 

experiments suggest that the proposed 

arrangement is not viable for large-scale systems, 

but show interesting advantages in small- and 

medium-scale clusters. 

1. Introduction 

The development of off-the-shelf, standardized 

high performance networking technologies (such 

as Myrinet  [5], Gigabit Ethernet  [6]or InfiniBand 

 [10]) has made viable the utilization of clusters of 

computers as high performance computing 

systems. In fact, the widespread utilization of 

different scales of such systems, has favored the 

research and development of a bunch of hardware 

and software technologies which have made the 

construction of compute clusters more affordable, 

moving from handcrafted clusters to perfectly 

integrated, ready-to-work systems that include a 

large collection of software tools that support 

centralized management. The development of 

such technologies, in turn, have favored an even 

broader utilization of HPC clusters which, in fact, 

have become the preferred way to build high 

performance computing systems. For instance, 

looking at the current Top500 list  [8], we can see 

that only a few listed systems are built using ad-

hoc supercomputing technologies (Cray’s XT 

families  [2], NEC’s earth simulator  [12], IBM’s 

BlueGene families  [13] and IBM’s ASC  [14]), 

while most of the systems in the lists are different 

instances of clusters. 

The most common networking technologies 

used to interconnect state-of-the-art clusters are 

InfiniBand and Gigabit Ethernet, being the former 

a high performance alternative and the later a 

cost-effective choice. At any rate, compute 

clusters tend to be interconnected using 

multistage, fat-tree based topologies  [20]. This 

class of indirect networks offer high bandwidth, 

low latency communications and have some 

desirable properties that can be exploited both by 

constructors and users: good scalability, high path 

diversity, routing simplicity (deadlock-freedom), 

high resilience to failures, low disposition to 

congestion, etc. Other indirect topologies such as 

the full-Clos, implemented in the TACC Ranger 

 [26] are less commonly utilized. 

As far as we know, cube-like topologies, 

inherited from massively parallel processing 

systems, have been rarely used to build super-

clusters. A significant exception is the 11D 

hypercube implemented in the NAS Pleiades  [19]. 

SCI  [23], a similar technology whose specification 

considered the construction of direct networks, did 

not gain enough market acceptance. 

There are two main reasons to justify this 

neglect of direct networks from the cluster 

community. Firstly, these topologies are deadlock-

prone and, therefore, their use would require 

adding deadlock avoidance mechanisms into the 

switching elements or, alternatively, a careful 

selection of the routing scheme. Secondly, cube-

like topologies do not scale as well as multistage 

topologies do, as will be discussed later on. 



  

 
The main proposal of this paper is as follows. 

Let us assume that a cluster building block is  

composed of a collection of compute nodes in an 

enclosure. This integrates a network switch that 

connects all those nodes and have some external 

links. These links are normally used to build a 

tree-like network, connecting them to an upper-

stage switch. Instead of doing that, we propose to 

connect the building blocks directly among them, 

without intermediate switches, in the form of a 2D 

or 3D cube. We call this an indirect cube because 

it does not connect nodes directly; nodes are 

connected to switches that form a cube. Note that 

external links have to be arranged in blocks, using 

one or more links per dimension – direction: X+, 

X-, etc. In the experiments below, 2D tori with 4 

parallel links per direction were used. 

In this paper we explore the feasibility of 

using networks composed of standard switches 

arranged as 2D torus topologies, showing how 

their performance does scale, when compared to a 

tree-like topology. The remaining of this paper is 

structured as follows. Section 2 discusses the 

reasons that motivate the utilization of cube-like 

topologies to interconnect clusters. Section 3 gives 

detailed explanation of the simulation-based 

evaluation work carried out: systems and 

workloads. Section 4 shows and discusses the 

obtained results. The paper is closed in Section 5 

with the main conclusions of this work. 

2. Motivation 

We can find two main motivations for arranging 

the off-the-shelf switches commonly used in 

clusters and superclusters as an indirect cube. The 

most compelling one is reducing the cost of the 

interconnection network; additionally, we can take 

advantage of the vast research work carried out 

for this kind of topologies in order to build a 

system with good performance levels. 

Massively Parallel Processing systems have 

been commonly built around cubes (or meshes) 

and, therefore, there is plenty of previous work on 

how to exploit the characteristics of these 

topologies. There are also well-known best 

practices to use them. Furthermore, lots of parallel 

scientific applications are implemented bearing in 

mind that they are going to be executed over a 

network adopting these topologies. In fact, the 

implementation of a broad range of math 

operations is straightforward using cube-like 

virtual topologies, as can be seen in  [3] and  [4]. 

Briefly, the kind of interconnection networks 

proposed in this paper can be considered as a 

hybridization of direct and indirect networks. 

Regarding the costs, it is remarkable that the 

number of network components (switching 

elements and links) of a cube-like topology 

increases in O(N), while in a tree-like topology it 

increases in O(N log N), being N the number of 

nodes to be interconnected. Basically, the number 

of network components in an indirect cube is the 

same as the number of network components in the 

first stage of a comparable tree. In other words, 

the savings obtained are all the extra links, 

switches and racks required to form and house the 

remaining stages of the network. To illustrate this 

fact, reader can see in Fig. 1 the floor plan of a 

large-scale Sun Constellation cluster, in which the 

racks containing the interconnection network are 

shown in red. Implementing an indirect cube 

would allow removing these interconnection 

racks, with the subsequent savings in terms of 

space, power consumption and heat dissipation.  

Note that current blade server technologies 

allow the integration of network switches inside 

the blade enclosure. Looking at the web pages of 

the top server manufacturing companies, we can 

found several examples of blade enclosures that 

include slots for communications: Dell  [7], HP 

 [9], IBM  [11] and SuperMicro  [25]. If first-stage 

switches are integrated with the compute nodes, 

our building blocks could be extra-dense 

enclosures that can be connected directly.  

 

Fig. 1. Floor plan of a Sun Constellation system. 



  

 
Note that the cost overheads of purchasing 

extra racks to form a multistage topology would 

become more noticeable for small systems. If we 

assume that we always fill a rack with servers, we 

would need to purchase an extra rack just to house 

the switches required to build the network. An 

extreme scenario would be purchasing a rack to 

store a single switch. 

Building the proposed network with the 

above-mentioned blade enclosures would be 

extremely easy, because it would not require any 

external switch (therefore, no extra racks). Also, 

cabling would be much simpler, compared to the 

tree. Looking again at Fig. 1 we can see that the 

racks storing the interconnection are placed 

roughly in the center of the floor plan, in order to 

keep the links as short as possible. Still, those 

racks located in the borders of the room will 

require links of, at least, a few tens of meters. In 

the case of an indirect cube, the racks can be 

connected to their physical neighbors, which will 

require links of a few meters at most. Note also 

that shorter links means faster transmission speeds 

and reduced latencies – although, as we assume 

the utilization of standardized technologies 

commonly based on optical links, we will not 

consider these advantages. We do consider, 

though, the latencies derived from switching 

times. 

3. Experimental Set-Up 

Our in-house developed interconnection network 

simulation and evaluation environment, in short 

INSEE  [22], was the workbench used to evaluate 

the feasibility and scalability of the indirect cube 

network. Bearing in mind current technologies to 

build high performance clusters, we have modeled 

the systems basing on the TwinBlade servers 

offered by SuperMicro  [25] because of their 

compute density, the highest we found. This 

technology allows integrating 20 compute nodes 

in 7U enclosures. Each enclosure can also house a 

36-port QDR Infiniband switch, with 20 ports 

devoted to connect the compute nodes via a 

backplane, plus 16 external output ports. A regular 

rack (42U) can include six TwinBlade enclosures 

– that already include the first stage of the 

interconnection. A depiction of a blade enclosures 

and a rack are shown in Fig. 2. 

Our study includes systems composed of 

small to medium-scale clusters, assuming always 

the utilization of complete racks: from a single 

rack (120 compute nodes) to 64 racks (7680 

compute nodes). We focus on how the 

performance of the indirect cube scales in 

comparison with that of the kind of tree topologies 

implemented in state-of-the-art clusters. 

To keep things simple, we have modeled 

systems using switches with a fixed number of 

ports. We have selected 36 ports, to emulate the 

switches included in the TwinBlade enclosures by 

Supermicro. With these switches we built a thin-

tree topology using the 20 internal ports to 

connect with lower stage of the tree and 16 ports 

to connect to the upper one. Note that the 

performance of such topology will be very close 

to the performance of a full-fledged fat-tree 

because the trimming is not very aggressive  [18]. 

With the number of racks included in our set-up 

this topology will have in most cases three stages. 

The only exceptions are the systems composed by 

1, 2 and 3 racks, which will fit in a 2-stage tree. 

Examples of the 2-stage and the 3-stage trees are 

depicted in Fig. 3 

 

 

Fig. 2. Schematic depiction of a TwinBlade enclosure 

(up) and a rack storing 6 of them (down). 



  

 

In the case of the indirect cube, as explained 

before, only the first stage of switches (those 

inside the TwinBlade enclosures) is needed to 

interconnect all the compute nodes. It will be 

unnecessary to add extra switches or racks to 

house them. Taking into account the 

characteristics of the switches, we will build 2D 

tori using 4 parallel links in each dimension, as 

depicted in Fig. 4. 

Networking components are modeled as 

follows. The switching strategy is virtual cut-

through with packets composed of 8 phits 

(physical units) each. Each input port is split into 

two virtual channels each of them having 

associated a queue able to store up to 4 packets. A 

shortest path credit-based adaptive routing scheme 

has been used in both the tree and the indirect 

cube topologies. In this scheme each input port 

sends the number of free slots in its queue to the 

neighboring output ports. Packets are routed 

through the feasible output port with more credit. 

Note that credits are transmitted out-of-band and, 

therefore, do not interfere with regular traffic of 

the applications. 

In the case of the tree, adaptivity means that 

packets can adapt in the upward route, but the 

downward route is always static (destination mod 

k). On the other hand, the indirect cube adaptivity 

allows changing the direction and also the parallel 

link in the same dimension. Note that in an actual 

implementation, the four parallel links could be 

aggregated and used as a single connection 

working at 4 times the speed of a regular link. A 

20

 

 

Fig. 4. Port arrangement of the switch included in a 

TwinBlade enclosure to form an indirect cube (up). 

The indirect cube constructed with the six  
enclosures within a single rack (down). 

 

 

Fig. 3. Examples of the trees used in our experiments: 2 stages (up) and 3-stages (down). 
Most elements are hidden for the sake of clarity. 



  

 
bubble scheme  [21] is added in order to guarantee 

deadlock freedom. Given that the topology is 

composed of rings, when the number of racks 

increases, the network becomes congestion-prone. 

For this reason, we will measure the performance 

of the topology after including a simple 

congestion control mechanism that gives priority 

to the traffic already inside the network  [15] 

(therefore, penalizing new injections from nodes). 

This mechanism is similar to the one used in the 

BlueGene/L family of supercomputers  [1]. For the 

sake of completeness we will measure the 

performance of the indirect cube topology with 

this mechanism activated and deactivated. We 

want to remark that using adaptive routing 

schemes allows taking the best of each topology, 

which in turn allows fairly comparing them. 

Given the wide variety of network sizes to 

evaluate, the use of network traffic taken from 

actual application traces is not feasible in our 

environment. For this reason we have used a 

collection of synthetically generated workloads 

that resemble the way in which scientific 

applications communicate. Most of these 

workloads are explained and justified in  [16] and 

 [17]. We proceed with a brief description of the 

workloads used in this paper. 

In All-to-All, all the nodes send a message to 

all the other nodes, starting from their next one. 

After sending all the messages, each node waits 

for the reception of all the messages addressed to 

it. The message size is 1 Kbyte. 

Binary Tree is an optimized (logarithmic) 

implementation of a reduce operation in which the 

reduction is made in several steps, each of them 

halving the number of messages. The message 

size is 10 Kbytes. 

Butterfly is an optimized (logarithmic) 

implementation of an all-reduce operation. Each 

node interchanges messages only with a subset of 

the nodes, instead of with all of them. The 

message size is 10 Kbytes. 

In Near Neighbor, the nodes are arranged in a 

virtual 2D torus. Each node sends a message to 

each of its neighbors following a dimension order 

(X+, X-, Y+ and finally Y-) and then waits for the 

reception of its neighbors’ messages. The message 

size is 10 Kbytes. 

In n-Bodies, the nodes are arranged in a 

virtual ring. Each node starts a chain of messages 

that travel clockwise across half of the ring. When 

the chain finishes, the node at the other side of the 

ring sends a message to the source node. The 

message size is 10 Kbytes. This workload is only 

defined for an odd number of nodes. For this 

reason one of the nodes of the network will not 

take part in the execution of this workload. More 

details about this workload can be found at  [23]. 

In Random, multiple waves of messages are 

generated in such a way that all the messages of a 

wave must be received before start sending the 

messages in the next wave. The source and 

destination of the messages are selected randomly 

following a uniform distribution. The wave 

length, W, is a parameter and affects the causality 

of the workload. In this evaluation 40000 

messages of 10 Kbytes each are generated using 

three different values for W: 1, 200 and 40000. 

All workloads were generated to evaluate a 

wide variety of systems composed of 1 to 64 racks 

(120 to 7680 compute nodes). The only 

exceptions are All-to-All and n-Bodies because 

their formulation is quadratic and could only be 

scaled to systems composed by up to 16 racks. 

All-to-All, Butterfly, Near Neighbor and all 

the Random cases can be considered heavy 

workloads, as they will stress the network with 

high contention and congestion scenarios. In 

contrast, Binary Tree and n-Bodies can be 

considered light because of their high levels of 

causality, which limit the formation of persistent 

contention for the utilization of network resources. 

At any rate, the workloads only include data 

interchanges (communication), and therefore the 

obtained results should be understood as a worst-

case study because when adding computing 

intervals, the execution speed differences among 

topologies will be diluted.  

Regarding the task-to-node placement policy, 

in the trees it will be consecutive, meaning that the 

nodes will be occupied from left to right. In the 

case of the indirect cubes, the 20 nodes connected 

to a switch will be conveniently placed as a 5×4 

sub-mesh to keep the resultant indirect cube as 

close to a square as possible in all configurations. 

Note that, as we will see later, this placement will 

favor the communication pattern of the Near 

Neighbor workload but, in exchange, it will be 

detrimental to the performance for other 

workloads. In the case of the Random workloads, 

as the underlying pattern is uniform, the 

placement will barely affect the overall 

performance. 



  

 
4. Analysis of Results 

The execution time for the different systems and 

workloads are plotted in Fig. 5. For the sake of 

clarity the results of each configuration have been 

normalized to the time required by the tree 

topology. Therefore, the reported value for the 

tree will be always 1. A lower value represents a 

faster dispatching of the messages. The tree is 

represented by the line denoted as tree, while the 

indirect cube is represented by the lines denoted 

as icube and icube+cc, being the later the case in 

which congestion control is activated. 

As we could expect given the difference in the 

amount of available network resources, in most 

cases the execution time required by the indirect 

cube is noticeably longer than that required by the 

tree. The only exceptions are the Binary tree and 

the Near Neighbor workloads. The former has 

such a low-demanding communication pattern that 

most networks can handle it easily. Regarding the 

latter, the placement selection for the indirect cube 

allowed for a perfect match between the virtual 

topology of the workload and the actual network 

topology, which resulted in a near-optimal 

behavior. 
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Fig. 5. Normalized execution time of the different workloads. 



  

 
It is also noticeable that in those cases where 

the tree outperforms the indirect cube, the larger 

the system is the worse are the results of the cube. 

This is explained by the lower scalability of cube-

like topologies when compared by trees: O( D N ) 

versus O(log N) in terms of distance, being N the 

number of nodes of the topology and D the 

number of the dimensions of the cube, 2 in our 

set-up. The only exception to this rule is the n-

Bodies workload, in which the difference between 

topologies seems to be independent of the system 

scale; a constant (approx. 2). This is because the 

high causality of the workload, composed by large 

chains of dependencies, does not allow fully 

exploiting the network resources of a tree. In fact, 

the results for this workload are affected more by 

the placement than by the topology itself. 

The reader should note that, for those 

workloads for which the indirect cube can not 

compete with the tree (All-to-All, Butterfly and 

the Random workloads), the activation of the 

congestion control mechanism is noticeably 

effective to boost the execution time of the 

workload. In the remaining cases, the congestion 

control does not affect the execution speed at all, 

neither positively or negatively. 

We can conclude that the indirect cube 

topology can be a good choice for small- and 

medium-scale systems, especially for those that 

would require extra racks to store only a few 

switches. As shown by our results, scaling up the 

system may lead to the network becoming an 

important performance bottleneck, especially for 

those workloads that tend to stress the 

interconnection network. 

To close the section, authors want to insist in 

that, while in most cases the indirect cube 

performs worse than the tree, it offers in exchange 

clear savings in terms of network complexity. 

These savings manifest in the form of fewer 

switches and racks, with the subsequent 

diminution in the requirements of space, power 

consumption and heat dissipation. Furthermore 

the number of links and their length is also 

reduced, which should lead to faster system 

deployment and simpler system management. 

5. Conclusions 

In this paper we have proposed arranging indirect 

networks, such as those used in current clusters 

and superclusters, in the form of cube-like 

topologies somewhat similar to those traditionally 

used in supercomputing systems. A thorough 

motivation was discussed focusing basically in 

reducing cost and complexity of deployment, even 

if performance is somewhat affected. 

The indirect cube was compared to a tree-like 

topology, the de facto standard in the composition 

of superclusters. Results of our simulation-based 

experimental work show that the indirect cube 

network is not as good as the tree when handling 

communication-intensive workloads. However, 

adding a simple, local congestion control 

mechanism was enough to boost performance 

with these workloads. On the other hand, the 

performance of indirect cubes with less intense 

workloads (for example, those with long chains of 

dependencies) is comparable of that of the tree.  

It is remarkable that an underlying cube-like 

topology can be effectively exploited by 

applications, by means of arrangements of 

processes using virtual meshes and tori, which 

exploit locality in communications. In our set-up, 

the indirect cube topology experienced an 

improvement of roughly 20% in comparison to the 

tree when dealing with this kind of workloads. 

The overall conclusion of this paper is that, 

while clusters arranged as an indirect cube are 

competitive in small- and medium-scale 

configurations, they should not be used in large-

scale systems because of their limited scalability.  

Still, it would be possible to scale up from a 

small system arranged as an indirect cube to a 

large system interconnected by a tree-like 

topology, just by adding more racks (compute and 

networking). This is a viable option because the 

networking technology is the same as that used in 

regular clusters. 

Anyway, more research needs to be performed 

in order to provide routing schemes that support 

efficient deadlock-free static routing for indirect 

networks arranged forming this topology. 
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